
Now You See It,

Now You Don't

Michael R. Mossman

Quispamsis, NB

The secret of "transparent" cartridges on the C64

Have you ever wondered why those marvellous cartridges can

do things to your computer, but never show up anywhere in

memory? The first time I saw Busscard II (an IEEE interface for

the C64 that adds basic 4.0 disk commands) at a friends house, it

made me curious. I asked to see the machine language code, but

we could not find it in memory. This curiosity stayed on the back

burner until I bought my Fast Load cartridge. Again, the pro

gram could not be found in memory. Overwhelmed, I proceeded

to dismantle the cartridge. Inside, I expected to find a maze of

modern electronics. Much to my disappointment, there sat two

lowly ICs. One was the expected EPROM and the other a 7407.1

traced some of the lines but it didn't make much sense. Disap

pointed, I closed it up and it remained in the back of my

computer for over a year.

A few months back, I bought a "Promenade" EPROM program

mer to burn a few of my own custom chips. Every now and then

I would cast an eye at that Fast Load cartridge, wishing that I

could make my cartridges invisible in memory. I revived my

attack on that despicable cartridge with renewed vigor. I re

moved the EPROM from the board and read the program out

with my Promenade. I looked at the code and figured that the

program ran at $8000 but I knew that the program could not be

seen at $8000. This time I sat down and traced out every line on

the board and drew a diagram as I went. Low and behold, the

secrets were revealed to me.

I would like to point out that this article is not to show you how to

copy the Fast Load cartridge. The cartridge is such good value

for the money that building one yourself costs more than buying

it outright. The code itself is of no use because it will not run by

just loading and running it at $8000 - it is much more involved

than that. The value lies in being able to put wedges in BASIC

and set vectors that are completely transparent to other pro

grams. All this and your program occupies no memory. The

memory area at $C000 - $CFFF is fought over by so many

programs. There are times when I want the DOS wedge and

another program in memory at the same time. This is impossible

because they conflict at $C000.

To make your own invisible program, it is necessary to under

stand the normal control line operation of the expansion port.

These are the lines available:

EXROM - This line is normally high (1). To tell the PLA that you

want the CPU to read the external rom at $8000, this line is set

low.

RQML

SN7407

RESET

* €

irol

To £S and OE

of ROM chip

I

1/01

DE0O-DEFFx

8O0O-9FFF'*

1) Pin 7 is Ground

2) Pin 14 goes to +5V supply

3) All address and data lines on the ROM or EPROM go to their

equivalents on the expansion port.

Figure 1

ROML - This line is a type of decoded address line. When the

CPU wants to read the external ROM at $8000, this line is pulled

low or 0. ROML will never go low if the EXROM line is not low.

RESET - This line is usually high when the computer is running.

Its purpose is to prevent the CPU from trying to execute ML

instructions when the computer is cold started. This allows the

other chips to reach their "normal" states before the CPU

addresses them. RESET is low during reset time. The computer

would act flaky without a RESET line. The RESET line goes low

in only two normal operations:

1) When the computer is turned on.

2) When the reset button is pressed on the computer.

I/O 1,1/02- These lines are intended for selecting an external

I/O device, e.g. Adding an ACIA or a CIA chip. Selection is done

by pulling the line low. This is done when you do a read or write

to $DE00 - $DFFF. I/O 1 is the area from $DE00 - $DEFF and

I/O 2 is $DF00 - $DFFF.

The Transactor 49 November 1987: Volume 8, Issue O3

Now, let's look at the invisible cartridge - see Figure 1. The chip

is a 7407 hex buffer and so if a low or a 1 is put in, a low or 1

comes out. When the computer is turned on, the RESET line is

low. This causes the EXROM line to be low. The line is held low

for a period of time, after reset, by the capacitor. When the

computer reads the $8000 area it will see the EXROM line in a

low state and use ROML to address the external cartridge. If it

finds the autostart sequence, it then passes control over to the

cartridge code. All this time, the EXROM line has been held low

because ROML line is low.

To review the concept: The RESET line starts the sequence but

the ROML line holds the EXROM line low while the CPU is

reading code from the $8000 block. If the CPU stops executing

code for a period of time, then the cartridge at $8000 will

disappear (EXROM stays high because ROML is high). The

cartridge code sequence is: normal cold start initialization, set

your own vectors, and then pass control to BASIC.

The question now arises "How do I get the code to reappear at

$8000, now that the cartridge is invisible?". If a read or write is

done to $DE00, then the I/O 1 line will go low causing the

40:

50:

60:

90:

100:

110:

120:

130:

140:

150:

160:

170:

180:

190:

200:

210:

220:

230:

0801

0801

0814

0814

0814

0816

0818

081a

081c

081 e

0820

0820

0823

0824

0826

0826

0829

.opt p4

store = $fb

.bas ml

ml = *

a9 00

85 fb

a9 80

85 fc

00

00

aO

a2

Ida

sta

Ida

sta

Idy

Idx

#$00

store

#$80

store +1

#$00

#$00

8e 00

ca

dO fa

8c

b1

082b 91

240: 082d

250: 082e

260: 0830

270: 0833

280: 0833

290: 0835

300: 0837

c8

fO

4c

e6

a5

c9

310: 0839 fO

320: 083b 4c

330: 083e

340: 083e 60

00

fb

fb

03

26

fc

fc

aO

03

26

de

de

loop =

stx $deOO

dex

bne loop

loopi =

sty

Ida

sta

$de00

(store), y

(store).y

;address for loop storage

;set up for read write loop

completely discharge ca

pacitor for reading eprom

;loop for reading eprom

;read eprom

;store to ram at same

memory location

08

iny

beq add

jmp loopi

EXROM line to go low. The capacitor will hold the line low for

period of time. Just enough, so that when a read or write is done

to $8000, the ROML will be pulled low by the CPU because

EXROM is still low. In this case, I/O 1 line starts the sequence

but the ROML line, again, holds it.

One of the vectors that you set in the cold start code could point

to code in the cassette buffer, the $02A7 - $02FF area, or $C000

block. This code is necessary because it will make the $8000

code visible again. The drawback is that using the above areas is

dangerous because other programs like to use these same spots.

The answer is in using the I/O 2 line. You will notice from Fig.l

that I/O 2 is connected to the CS (selected by a low) through a

buffer. When you do a read of the area from $DF00 - $DFFF you

will see code. The magic thing about this code is that it is really

located in the rom chip at $9F00 - $9FFF. You appear to see it at

I/O 2 area because of the way the chip is selected.

Let's look at how this type of cartridge can be used in your own

code. Suppose you would like to implement a wedge in basic.

When the machine is turned on, the RESET line is pulled low

causing the EPROM at $8000 to appear. The cartridge stays

visible because of the capacitor on the EX

ROM line. The code at $8000 is executed

because the key code exists. You make a

jump to the $DFF0 area to initialize I/O

devices, perform the RAM test, set up page

zero kernal locations and then the I/O vec

tors are set. Chrget and various zero page

BASIC pointers and finally the vectors at

$0300 - $030B are set. It is here that you

can now set the BASIC error vector at $0300

to point to your code at $DF00. When the

BASIC interpreter errors out because it does

not recognize a command, the error vector

will point to your code at $DF00. The code

at $DF00 will do a read or write to $DE00.

This will cause the EXROM line to go low

and the eprom to appear at $8000. You can

now jump to your code in the EPROM to

check the chrget routine for your command.

If it is your wedge then the command is

carried out, if not then you jump to the

normal error handling routine.

add =

08

inc store+ 1

Ida store +1

cmp #$a0

beq end

jmp loopi

;if low byte is zero then

increase high byte by one

;if high byte

$a0 then end

is equal to

I can see many uses for this type of pro

graming and I think that many of you will

also. Included here is a little machine lan

guage program that will make the code

from the Fast-Load cartridge appear and

then store it to normal ram at $8000.

end =

rts ;return to basic, program

can now be read with a

monitor from $8000-$9fff

The Transactor
5O November 1987: Volume 8, Issue 03

